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Incorporating linguistic theories of
pronunciation variation into
speech-recognition models

By M ari Ostendorf

Department of Electrical Engineering, University of Washington, Seattle, WA, USA

This paper describes the use of distinctive linguistic features to represent acous-
tic variability of words for speech recognition. Focusing on conventional hidden
Markov model technology, we review implicit use of linguistic features as questions in
decision-tree design for both coarticulation and pronunciation modelling and describe
possibilities for more explicit use. The importance of conditioning on (hierarchical)
syllable and prosodic structure is discussed, and the problem of modelling relative
timing of feature-dependent acoustic cues is raised as a key limitation of current
models.

Keywords: acoustic modelling; pronunciation modelling; phonetic variation

1. Introduction

It has often been noted that automatic speech-recognition performance is much worse
on spontaneous speech than on carefully articulated speech. For the best systems
reporting results on the 1999 DARPA Broadcast News benchmark tests, word error
rates on the spontaneous speech portion of the test set (14{16%) were nearly double
those on the baseline condition comprised mainly of news announcer recordings (8{
9%) (Pallett et al . 1999). Those sites that also participated in a workshop on conver-
sational speech recognition a few months later reported word error rates of ca. 40%.
Pronunciation variability has frequently been cited as a key reason for the poor per-
formance, and McAllister et al . (1998) provide evidence to support this hypothesis
using simulated-data experiments. Anecdotal examples of pronunciation variability
abound. For example, in a 4 h phonetically transcribed subset of the Switchboard
corpus, we found over 30 di¬erent pronunciations of `and’, from `» n d’ (canonical)
to ` n’ (most frequent) to a nasal ®ap, with at least 10 di¬erent vowels observed
and frequent ­ nal consonant deletion/reduction.

Not surprisingly, there have been a large number of research e¬orts devoted to pro-
nunciation modelling in the last few years, including techniques that use automatic
learning, hand-written phonological rules and various combinations of the two. Unfor-
tunately, the gains from phone-based pronunciation modelling techniques have been
disappointing, e.g. reducing word error rates from 40.9% to 38.5% on conversational
speech (Riley et al . 1999). This gain represents a statistically signi­ cant improvement
on a di¯ cult task, but not the factor-of-­ ve reduction predicted in McAllister et al .
(1998). Of course, the factor of ­ ve is optimistic because of the match between mod-
elling assumptions in the recognition and simulation of data, but most researchers
still share the intuition that there is more to be gained from pronunciation modelling.
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In automatic speech recognition, pronunciation variation is typically modelled as
insertion, deletion or substitution of a phone segment, where the phone inventory
includes approximately 40{50 basic consonant and vowel sounds like `s’, `m’, `o’ and
`I’ (including multiple phones for some phonemes). In contrast, phonological varia-
tion is frequently described in linguistics in terms of simple feature changes, where a
feature characterizes categorical contrasts between speech sounds, such as `voiced’,
which distinguishes `b’ from `p’, `z’ from `s’, etc. and the feature `nasal’ which is asso-
ciated with the group of phones `m’, `n’ and ` ’. (Note that the term `feature’ has
been used to mean a variety of things in the speech-processing literature, including
continuous-valued articulatory parameters, acoustic correlates of distinctive features,
and the acoustic measurements computed as a ­ rst stage of recognition, all of which
di¬er from the symbolic usage intended here.) A vector of feature values can be
thought of as a particular encoding of a phoneme index, so a change in one feature
corresponds to a change in the phoneme. Since the `code’ was designed to cover dif-
ferent languages of the world, there are possible feature combinations that do not
correspond to a phoneme in English.

While current recognition training techniques already use linguistic features implic-
itly in the de­ nition of phone classes, there are practical reasons why explicit use
of features may give di¬erent results. A goal of this paper is to overview current
approaches and show how linguistic knowledge can be used to better advantage
within conventional hidden Markov model (HMM) recognition technology. Our view
is that, because linguistic theory of phonetic variation is far from complete, particu-
larly in accounting for individual speaker variation, deterministic phonological rules
cannot replace statistical models or even deterministically de­ ne their structure. This
is especially true for conversational speech, since the controlled studies on carefully
read laboratory speech do not always translate directly to the phenomena observed
in casual spontaneous speech. Instead, linguistic knowledge should be incorporated
via automatic training. HMMs represent a ­ rst step.

This paper argues that phonemes are too coarse a unit for representing acoustic
variation in speech for two reasons. First, a good model of phonetic variation should
depend on both phonetic context and on higher-level syllable and prosodic structure.
With this increase in the dimensions of context conditioning, the phoneme space may
be too large for robust parameter estimation. Second, the use of phonemes limits the
model of timing to sequential state durations, whereas a representation of relative
state timing is critically needed.

The remainder of the paper is organized as follows. In x 2, approaches for mod-
elling coarticulation and pronunciation variation in a phone-based HMM system are
described, followed by a discussion of acoustic variation in terms of linguistic fea-
tures in x 3. Next, x 4 covers recent work on incorporating linguistic structure above
the level of the phone, both implicitly and explicitly. The issue of relative timing of
feature realization is discussed in x 5, with concluding remarks in x 6.

2. Phone-based acoustic and pronunciation modelling

In the standard statistical approach to speech recognition, the recognition problem
is posed as one of choosing the word sequence that maximizes the likelihood

ŵ = arg maxw p(x j w)p(w);
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where x = x1; : : : ; xT is a T -length sequence of acoustic observations (e.g. cepstral
parameters) and w = w1; : : : ; wn is a hypothesized word sequence of length n. The
probability function p(x j w) is often referred to as the acoustic model, and p(w)
is referred to as the language model. The acoustic model typically includes three
main components. First, a base lexical representation, typically called a `baseform,’
is expanded into a list of pronunciations or a pronunciation network, annotated with
pronunciation probabilities. Here, a `pronunciation’ is a sequence of phone symbols.
Second, each phone in the list or network is mapped to a sequence of model indices
depending on its phonetic context. Lastly, a probability distribution describes the
likelihood of a sequence of (continuous) acoustic observations given the model index
sequence. The observation model is most often a Gaussian or Gaussian-mixture dis-
tribution, as in an HMM, but it could also be a more complex segmental distribution
model or a neural network. Mathematically, these components are evaluated together
in computing the probabilistic evidence for a word,

p(x j w) =
X

p( j w)p(x j )

=
X

p( j w)
X

s

p(s j )p(x j s)

max
;s

p( j w)p(s j )p(x j s);

where is a pronunciation (a sequence of phones: 1; : : : ; m), s = s1; : : : ; sT is
an HMM state sequence, and the approximation in the last step is made to sim-
plify the recognition search process. Thus, there are three component models: the
pronunciation model p( j w); the model of sub-phonetic temporal characteristics
p(s j ); and the observation model p(x j s). The ­ rst component is designed to
capture pronunciation di¬erences at the phone level, such as `» n d’ versus `» n’
versus ` n’ for `and’, while the second component models coarticulation e¬ects such
as formant trajectory changes at vowel onsets and o¬sets. The existence of these two
components demonstrates that phonetic variation takes a wide range of forms. Since
linguistic features provide a good framework for understanding both extremes, and
since the two components can be merged, this paper will cover both.

The aspect of modern speech recognizers with the longest history of using linguistic
insights is the second component: modelling of coarticulation via context-dependent
distributions, as in triphones where the phone model is conditioned on the left and
right phonetic context. Distribution clustering is used to estimate models for tri-
phones, because there are too many to estimate reliably. Clustering is typically at
the level of phone states, with 3{5 sequential states per triphone to capture temporal
variability. The most popular approach to distribution clustering uses decision trees
with linguistically motivated questions (Young et al . 1994). In other words, hand-
speci­ ed phone classes (e.g. grouped by manner and/or place of articulation) de­ ne
a set of binary questions, and the automatic decision-tree design algorithm chooses
to split groups of context-dependent models according to the question that results in
the greatest increase in likelihood.y In other words, the state s in p(x j s) is indexed

y Note that this use of decision trees is slightly di¬erent than the standard use, described by Breiman
et al . (1984) and in the pronunciation modelling discussion below, in that the objective is maximum
likelihood of data from a continuous-valued vector variable, rather than minimum entropy of the empirical
distribution for a discrete (categorical) variable.
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by a decision-tree leaf node, s = T ( ). Alternative data-driven clustering algorithms
have been proposed, but an advantage of using linguistic classes is that the mod-
els typically generalize well to contexts that are unseen in training data. In other
words, if a particular vowel is seen in the training data followed by both `n’ and `m’
but not ` ’, then the e¬ect of nasalization can be learned for all by de­ ning a nasal
class. Most clustering algorithms assume a ­ xed state topology for all triphones, but
improved temporal modelling can be achieved by allowing splitting as a function of
temporal position as well as a function of neighbouring phonetic context (Ostendorf
& Singer 1997). Clustering context-dependent models is very e¬ective for modelling
certain types of acoustic variation, but it cannot handle phenomena like apparent
segment deletion, since the assumption is that every context-dependent phone is
realized with some minimum duration (ca. 30 ms). Substitution can be handled by
using mixture distributions in the observation model, but this is a weak model of pro-
nunciation variation that allows implausible pronunciations (e.g. switching phones
midway through the segment).

Explicit pronunciation modelling, in the sense of predicting alternate phone se-
quences for a word, has become an active area of research as systems have matured
and been applied to spontaneous speech. Phonological knowledge is incorporated in
a statistical model in two main ways. One strategy involves training probabilities of
a set of hand-written context-dependent phonological rules (Cohen 1989; Tajchman
et al . 1995). A variation of this approach involves learning the context conditioning
for rule probabilities using a decision tree (Finke & Waibel 1997). In these cases, the
probability of a pronunciation is determined by the product of the probabilities of
the rules used to derive it. An alternative is to use decision trees to predict realized
phone identities given the baseform phone sequence (Riley et al . 1999), in which case
the word pronunciation probability is given by the product of the predicted phone
probabilities (from the tree leaf nodes),

p( j w) =
Y

j

p( j j T ( j 1; w)); (2.1)

where T ( ) is the decision tree and w includes the base pronunciation and lexical
stress pattern of the word. The methods share the technique of building an ini-
tial set of pronunciations (based on human knowledge or hand-transcribed data),
using forced alignment to determine which pronunciation is used for each instance
of a word in a large set of training data, and then training a new pronunciation
model based on these phone labels. A problem with this approach, nicely illus-
trated by Saraclar et al . (1999), is that improving the phone transcription via the
forced alignment step may lead to better phone-recognition models but possibly
poorer word recognition. The study by Riley et al . (1999) may explain this in part:
the assumption of conditional independence used in multiplying phone-realization
probabilities is an oversimpli­ cation that leads to poor word-level pronunciation
probabilities.

In summary, linguistic knowledge is already widely (and successfully) used in
speech-recognition systems, though the use of linguistic features per se is mostly
implicit in the de­ nition of questions for decision-tree design. Next, we look at
phonological variation from a linguistic perspective to see if there might be more
to be gained from explicit use of distinctive features in speech recognition.
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3. Distinctive features, phonological variation and prosody

In automatic speech recognition, the basic building blocks are phonemes (or phones),
which are divided into sub-phonetic regions that are sequential in time. In linguis-
tics, phonological features are typically viewed as the fundamental building blocks
of speech (Halle 1992), and phonemes are speci­ ed (or coded) in terms of features
with little or no representation of time. For the most part, distinctive features are
related to the manner in which a speech sound is produced (the degree of constriction
in the vocal tract), the particular articulator that is used (glottis, soft palate, lips
and tongue blade, body and root) and/or place of constriction, and how an articu-
lator is used to produce the sound.y Di¬erent feature systems have been proposed,
including binary and multi-valued features, as discussed in Clark & Yallop (1995).
Examples of binary features are nasal, voiced, continuant, round, etc. An example of
a multi-valued feature might be place of articulation, taking on values velar, dental,
labial, etc. Some binary features are values in a multi-valued system, e.g. nasal and
continuant are possible values of the feature `manner’.

Distinctive features are associated with acoustic correlates, though not all of these
are well understood. The correlates may also depend on combinations of features.
For example, the feature voiced is generally associated with periodicity in the time
signal, but one cue to a voiced stop consonant is a shorter time from the start of the
burst to the onset of voicing than for the unvoiced counterpart.

Pronunciation variations are sometimes expressed in terms of context-dependent
rules describing changes in the feature values or in feature association with segments.
Features may change values, as in a change from + to when a vowel or ­ nal
consonant is devoiced in the context of a subsequent voiceless consonant, and when
a tense vowel `i’ becomes a lax `I’; or a change in the place of articulation, as when `n’
becomes `m’ when followed by a labial stop (as in `can be’ or `grampa’). In a feature
system that uses the notion of unspeci­ ed features as a third `value’ of an otherwise
binary feature (Lahiri 1999), vowel reduction can be thought of as changing a feature
value to be unspeci­ ed. Feature changes can lead to situations where phone segments
appear to be deleted when there is still evidence for these segments in the realization
of neighbouring segments, as in a nasalized `»’ in a reduced form of `ca[n]’t’ or the
single nasal{dental segment sometimes produced for the two consonants in `in the’.
The features that de­ ne a phoneme do not always map to acoustic cues that form
synchronous parallel time functions, which can explain cases where segments appear
to be inserted, as in an epenthetic stop in `warm(p)th’ due to asynchronous alignment
of the nasal and continuant feature cues. These sorts of feature changes, sometimes
referred to as `feature spreading’,z can raise signi­ cant problems for phone-level
transcription of spontaneous speech (Fosler-Lussier et al . 1999).

The fact that certain sets of features tend to spread or reassociate as a group
has been used to argue for a hierarchical organization of features (Clements 1985).
Di¬erent hierarchies have been proposed; ­ gure 1 (from Keyser & Stevens (1994))
illustrates a feature geometry motivated by the structure of the vocal tract. As we

y Although distinctive features are closely related to articulation, they are themselves abstract dimen-
sions. In particular, they are not articulatory parameters in the sense of the `features’ used in work by
Deng and co-workers (see, for example, Erler & Deng 1993; Deng & Wu 1996), which are inherently
continuous but quantized for purposes of de­ ning discrete HMM states.

z The term `feature spreading’ has theoretical connotations that we would like to avoid here, but its
non-technical interpretation is useful for visualizing consequences for HMM state de­ nitions.
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Figure 1. A feature hierarchy motivated by vocal tract structure, with features labelled at
leaves and articulators labelled at internal nodes (reproduced from Keyser & Stevens (1994)).

will point out later, the existence of a hierarchy has important implications for speech
recognition, because of the possibility for parsimonious representation of statistical
dependence. While the hierarchy suggests some degree of independence between dif-
ferent `mini-tracts’ of the vocal tract, there are interactions between some features
that enhance certain phonetic contrasts (Stevens & Keyser 1989). Such interactions
imply that acoustic observation models should be conditioned on sets of features and
not only on individual features.

Pronunciation variation (and, therefore, the probability of feature changes) appears
to be very much dependent on syllable structure. Based on an analysis of hand-
labelled phonetic transcriptions of the Switchboard corpus, Greenberg (1998) ob-
serves that syllable onsets are most often canonical and codas are most frequently
changed or deleted. In a comparison of the conversational Switchboard data to the
read speech in the TIMIT corpus, the biggest di¬erence is in the variability of the
coda consonants (Fosler-Lussier et al . 1999).

In addition, there appears to be evidence that higher-level structure also plays a
role in the likelihood of feature changes, including word frequency, syntax and/or
prosodic factors. Fosler-Lussier et al . (1999) show an interaction between speaking
rate and word frequency in predicting how much a word pronunciation will deviate
from a dictionary baseform. Syntax appears to be a factor as well: it would sound
strange to have `did you’ spoken as ` ’ at a major syntactic clause boundary (as
in `If I did, you: : : ’). However, such phenomena may be more directly described in
terms of prosodic structure (Shattuck-Hufnagel & Turk 1996), which is related to (but
not identical to) syntactic structure. Cross-word-boundary phonological changes, as
in the ` ’ example, typically do not occur at major prosodic phrase boundaries,
and other insertion-like e¬ects do occur at prosodic boundaries. Dilley et al . (1996)
found that glottalization was more likely at vowel{initial word onsets when those
words were pitch-accented and/or the ­ rst word of a prosodic phrase. The frequency
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of glottalization increased with increased saliency of the location, such that glottaliza-
tion was quite likely (above 90% for the female subjects) if a word was both accented
and phrase-initial. Fougeron & Keating (1997) measured increased tongue contact
with the palate during `n’ for initial consonants of prosodic constituents in reiterant
speech. Such articulatory strengthening presumably has an acoustic consequence, as
illustrated by the di¬erence in consonant bursts as a function of syllable and word
position. There may be an e¬ect of enhanced phonetic realization via inserted fea-
tures at particularly salient regions of the speech signal: hyperspeech in the `hyper
and hypo’ (H&H) theory (Lindblom 1990). In the Switchboard corpus, there are at
least anecdotal examples, e.g. an o¬-glide of `»’ is enhanced in an emphasized pro-
nunciation of `and’, resulting in `» n d’ (using a phonetic alphabet). We conjecture
that conditioning feature changes on a prosodic hierarchy, starting from the level of
the syllable, will be needed to better explain the pronunciation variability in speech.

4. Modelling higher-level structure with HMMs

When all the observed pronunciations of a word are allowed in speech-recognition
decoding, performance degrades due to the increased confusability between words,
e.g. allowing `» n’ as a pronunciation for `and’ increases the possibility of confusing
`and’ and `an’. For this reason, the dependence of pronunciation variability on higher-
level linguistic structure is of great importance to speech-recognition systems|it
provides a means of dynamically varying pronunciation probabilities. Researchers
have begun exploring methods for introducing higher-level structure within the con-
text of the standard statistical (i.e. HMM) recognition paradigm, taking advantage
of multi-pass search architectures to condition on hypothesized word context. This
section will describe the two main developments, corresponding to the distribution
clustering and pronunciation modelling components described earlier. In both cases,
linguistic features are again used only implicitly, which we will argue may be limiting
the success of the extensions.

In order to incorporate syllable structure directly into design of the acoustic model
index sequence, an extension of the standard HMM context-dependent model clus-
tering framework was developed, referred to as tagged clustering. Tagged cluster-
ing incorporates symbolic descriptions of a base phoneme that re®ect higher-level
context, making it possible to capture phenomena such as a tendency to reduce
unstressed vowels and to more strongly release a stop consonant in word onset posi-
tion. Each phone in a dictionary is tagged according to factors like lexical stress,
syllable position, word position, etc. Then, tri-tag models are trained and clustered,
just as for triphone models, except that the decision tree must choose between ques-
tions that are motivated by these tags as well as those de­ ned in terms of phonetic
context. The idea of tagged clustering was ­ rst introduced in speech synthesis by
Donovan (1996), who found that lexical stress was among the most important ques-
tions in the sense of being asked early in the tree. The importance of stress has
also been observed in recognition experiments by others (Ostendorf et al . 1997; Paul
1997). Word position (beginning, middle, end) has been found to be important in
experiments by several researchers. The usefulness of syllable position is unclear; our
unpublished experiments contradict the negative results reported by Paul (1997),
perhaps because of our representation of multiple types of syllable onsets. A limita-
tion of tagged clustering is that coding phones causes a huge increase in the number
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of elementary context-dependent models, which leads to large memory requirements
and increased complexity of training because of the increase in possible data divi-
sions. As a result, only simple tag sets have been explored in large vocabulary systems
using cross-word context. Work in progress on multi-stage clustering may address this
problem by using di¬erent subsets of features in di¬erent stages of tree design.

The same higher-level tags can be used more easily in decision-tree pronunciation
modelling. Already, syllable structure and stress have proved to be useful (Weintraub
et al . 1996; Riley et al . 1999), but the problem of independence assumptions raised
in x 2 remains. An interesting solution to this problem is proposed by Fosler-Lussier
et al . (1999); they predict syllable-level pronunciations using decision trees, which
gives a reduction of ca. 10% WER of the spontaneous speech portion of the DARPA
Broadcast News task. They allow questions on syllable structure, as well as hypothe-
sized local word context, speaking rate, etc. Finke & Waibel (1997) have investigated
conditioning on similar factors in decision trees used to predict rule probabilities,
obtaining signi­ cant gains in both phone prediction and word-recognition perfor-
mance over using local phonetic context alone. Yet another approach is to condition
pronunciation probabilities, either word-level or decision-tree-based, on a discrete
hidden speaking mode variable predicted from acoustic cues and the hypothesized
word sequence (Ostendorf et al . 1997). The hidden mode can be thought of as a
mapping of high-level conditioning factors to a small space via unsupervised clus-
tering. While prosodic structure has not been used directly in any of this work, it
has been used indirectly via acoustic cues (such as presence of a pause), which may
indicate a prosodic phrase boundary.

In the above extensions, linguistic feature theory is not used explicitly; features
are implicit in the de­ nition of phonetic classes for decision-tree question learning.
Given in­ nite training data, one might argue that there is no di¬erence between
implicit and explicit use of linguistic features. After all, features simply provide a
particular encoding of phonemes. However, the reality is that training data are lim-
ited; experiments in Riley et al . (1998) show that recognition performance actually
degrades if pronunciation models are trained on a small subset of hand-labelled data.
The problem is exacerbated by conditioning on higher-level factors, which necessarily
occur less frequently than the triphones used in current context-dependent models.
Linguistic features provide a lower-dimensional representation for pronunciation pre-
diction that can be more e¯ ciently trained, i.e. estimating the probability of a binary
feature change (1 parameter) requires less data than estimating the probabilities of
40{50 phones. Another motivation for explicit use of symbolic linguistic features in
HMMs is the potential for incorporating (and optimizing) signal processing to extract
feature-motivated correlates (Bitar & Espy-Wilson 1996; Kirchho¬ 1996, 1998; King
et al . 1998), which are potentially more robust than standard cepstral features and
are likely to generalize better across languages.

A key question is: to what extent can one assume independence of features or sub-
sets of features? The simplest approach is to replace p( j j j 1; w) in equation (2.1)
with a product of feature terms,

p( j j j 1; w) =
dY

k = 1

p(fj;k j fj 1;k; w); (4.1)

where fj;k is the kth element of the feature vector at time j, and w is coded in terms of
features rather than phones. Unfortunately, this solution ignores the interdependence
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of feature changes and further exacerbates the problems of conditional independence
of phones. The hierarchical description of features may be useful here for specifying
a Markov-like dependence tree that allows conditioning feature changes on feature
values higher in the tree, as in

p( j j j 1; w) =

dY

k = 1

p(fj;k j fj; (k); f j 1;h(k); w); (4.2)

where (k) is the `parent’ of k in the tree hierarchy and f j 1;h(k) is the sub-vector
of features that are important for predicting the kth element of the feature vector.

In the above equations, we omitted the decision-tree dependence in the condition-
ing space for notational simplicity. Decision trees Tk[ ]|one for each of the d elements
of the feature vector|are incorporated as in p(fj;k j Tk [fj; (k); f j 1;h(k); w]). This
dependence of variables both within a tree and across time is similar to the hidden
Markov decision trees proposed by Jordan et al . (1996), though here we make use of
two trees: decision trees (for questions about w) and feature hierarchies. The decision
tree can automatically learn the appropriate sub-vector h(k), and also allows use of
higher-level structure. The success of such a model at predicting observed feature
changes can be used to evaluate di¬erent feature hierarchies.

5. Issues of timing

A limitation of all of the above approaches is in the modelling of relative timing,
since features cannot be mapped to a bank of synchronously changing acoustic cues.
At issue here is not the sophistication of the segmental duration model, though
HMMs are known to have weak duration models, but that a more ­ ne-grained control
of temporal variability is needed than the ­ xed number of states per phone-sized
unit used in most systems. Recognition experiments showing improved performance
from using context-dependent HMM triphone topologies support this claim, and
timing studies for speech synthesis also point to the need for sub-segmental duration
modelling (Van Santen 1997).

In the standard HMM framework, there have already been some e¬orts at mod-
elling pronunciation variability at a ­ ner-grained time-scale, e.g. the model index
sequence. The idea here is that, rather than substituting one entire phonemic seg-
ment for another, which can in®uence the choice of models for three segments because
of context-dependent modelling, partial segment substitution or deletion is allowed.
State-level pronunciation modelling has been explored without the use of any linguis-
tic knowledge (Eide 1999; Saraclar et al . 1999), showing gains over phone-level pro-
nunciation models with a more compact representation. Neither of these approaches
makes use of linguistic features, but it is easy to imagine doing so in the decision-tree
prediction paradigm.

An alternative to data-driven HMM state-level pronunciation modelling is to rep-
resent asynchronous acoustic cues as resulting from asynchronous distinctive feature
`state’ changes, as illustrated in ­ gure 2 for a binary feature encoding.y Deng &
Erler (1992) proposed a set of parallel linguistic feature streams, with rules for con-
straining feature `spreading,’ that are compiled together into what is e¬ectively a

y Representing features using a time-dependent state is not consistent with the linguistic notion of a
feature as an abstract discrete event, but it is useful for the HMM implementation.
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1  0  1  0  0
0  1  0  1  0
1  0  x  0  0
0  0  x  1  0
0  1  0  0  1
x  1  x  1  0
1  0  1  0  0

(a) lexical representation (b) binary HMM state coding (c) expanded state space

Figure 2. Conceptual illustration of a system where a binary encoding of phonemes (with unspec-
i¯ed features indicated by x̀’ ) maps to parallel, asynchronous binary feature streams, which can
be interpreted as a path in a d-dimensional state space. The shaded area indicates regions of
constraints that might be speci¯ed given higher-level structure.

context-dependent HMM with state sharing determined by human knowledge rather
than automatic clustering. A limitation of the approach is that independent training
of the composite states corresponds to assuming that all feature dimensions are inter-
dependent; there is no mechanism for training unseen states. More recent work looks
at extending triphone clustering techniques to this paradigm, though with limited
success (Deng & Wu 1996). The training problem can be addressed by treating the
di¬erent features and their associated acoustic parameters as independent streams,
using two-level (product state space) HMM decoding with synchronization of the
streams at the syllable level (Kirchho¬ 1996; King et al . 1998). Treating the streams
as independent also simpli­ es the problem of decoding the high-dimensional state
space. In addition, the framework nicely accommodates a variety of di¬erent acoustic
measures, which can lead to improved performance in high noise (0 dB) conditions
(Kirchho¬ 1998).

The independence assumption can lead to too much ®exibility, however, as evi-
denced by the fact that a more traditional phone-based model outperforms the
feature-based system in low-noise conditions (Kirchho¬ 1998). Two main problems
stand out. First, the independent decoding of the di¬erent feature streams within
the syllable corresponds to the independence assumptions in equation (4.1), which
is problematic because of the interdependence of feature changes. The tree-based
state prediction model in equation (4.2) provides more constraints, but at the cost of
higher decoding complexity. Second, the acoustic correlates of the di¬erent features
are not strictly independent, as mentioned earlier with respect to `enhancement’.
Such interactions imply that acoustic observation models should be conditioned on
subsets of features and not individual features. The work of Bilmes (1999) on learning
model structure may provide an automatic mechanism for learning an appropriate
dependence structure that also keeps the model dimensionality small.

All of these ­ ner-grained modelling techniques ignore the higher-level condition-
ing factors argued for in x 3, and one might think that the need for low-level vari-
ability modelling is at odds with the call for high-level context conditioning. Yet
there is growing evidence that the relative timing of gestures is related to higher-
level prosodic structure. For example, the work of Beckman and co-workers (see,
for example, Edwards & Beckman 1988) demonstrates that timing is in®uenced by
prosodic prominence and phrase structure. In other words, feature `state’ changes

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Linguistic theory and acoustic modelling 1335

may be asynchronous, but the relative timing is not completely unconstrained. In
fact, it appears to be highly systematic with respect to higher-level structure.

By better modelling the relationship between feature spreading (or reassociation)
and relative timing in di¬erent contexts, the amount of allowed pronunciation vari-
ability can be dynamically constrained. Thus, the issue of relating timing control
to higher-level structure may be one of the most important problems to address
in modelling phonological variation. Adjusting HMM state transitions according to
equation (4.2) is one solution, but state-transition probabilities are weak relative to
the high-dimensional observation models typically used. Learning context-dependent
constraints on temporal warpings, as allowed in a segmental model (Ostendorf et al .
1997), may provide another solution.

6. Conclusions

In summary, we have reviewed how current recognition technology already makes
implicit use of linguistic features in conventional HMMs. In both pronunciation mod-
elling and context-dependent distribution clustering, linguistic knowledge is used to
de­ ne allowable questions for decision-tree design, which automatically determines
the importance and interdependence of these factors. However, we argue that there
are greater gains to be had by using higher levels of linguistic structure in condi-
tioning phonological variation, and by modelling variation at a sub-segment level.
While this remains to be shown experimentally, we conjecture that the explicit use of
distinctive features in pronunciation modelling will facilitate ­ ne-grained modelling,
but that more sophisticated models of timing are also needed.

In this paper, we have taken the position that much can be done within the
con­ nes of conventional hidden Markov modelling and its derivatives. This is an
important place to start, because it o¬ers a wealth of existing tools and knowledge
to build on, and, therefore, a near guarantee of improving over the state of the
art. However, we also note that there are alternative models that may match the
event-driven linguistic feature view of the speech process better (e.g. H�ubener &
Carson-Berndsen 1994; Stevens 1995; Niyogi et al . 1998), though there are statistical-
modelling and e¯ cient-decoding questions still to be resolved with these frameworks.
In addition, we have chosen not to use explicit articulatory features, in part because
their essentially continuous nature is not so well suited to a discrete-state model, but
also because the possibility of multiple articulatory con­ gurations for certain sounds
greatly complicates the model. Again, there is interesting work in this direction
attempting to address these problems (Deng 1998).

One of the advantages of using linguistic knowledge in statistical modelling, in
addition to the potential for improved performance and better generalization, is the
possibility of actually increasing our knowledge based on the automatically learned
structure of the resulting model. So far, most of what we see in the automatically
learned structure is not at all surprising to linguists, e.g. that lexical stress and syl-
lable position a¬ect pronunciation variability. However, the fact that such structure
can be learned is at least promising, given current gaps in human knowledge. Particu-
larly for spontaneous speech, where it is di¯ cult to design controlled experiments, our
understanding of the interaction between prosodic and segmental or sub-segmental
structure may be advanced by the ability to analyse large amounts of data with
statistical models.
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Discussion

K. I. B. Sp�arck Jones (University of Cambridge, UK ). You said that in some
areas, such as prosody, linguistic theory is simply lacking. What are those areas?

M. Ostendorf. One is the relationship between feature changes and prosodic struc-
ture: we know that there are e¬ects, but we do not have a very good understanding
of this yet. Another problem is variability between individuals. We have found that
to be quite extensive and apparent, but it has not been well studied.

S. Isard (University of Edinburgh, UK ). How would you deal with the obvious di¬er-
ences between speakers, such as the di¬erence between speakers who have postvocalic
/r/ and those who do not?

M. Ostendorf. I think that we need adaptive models to deal with such cases.

E. Janke (IBM, UK ). Could your system be improved by improving phone-recog-
nition accuracy?

M. Ostendorf. That is not such an interesting strategy: improving the phone
accuracy does not always improve the word model. Optimizing the performance of a
lower level of analysis can even detract from success in recognizing higher-level units,
which is the real goal.
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